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Abstract

We do an in-depth analysis of Nesterov and Polyak’s seminal paper "Cubic reg-
ularization of Newton method and its global performance". We motivate cubic
regularization by drawing the connection between Newton’s method and Gradient
Descent, and show that cubic regularization stabilizes Newton’s method. Then,
we examine the algorithm for cubic-regularized Newton’s method proposed by
Nesterov and Polyak, providing analysis of the convergence bounds proven by the
paper. We take care to consider the the non-degenerate case as a special condition,
providing intuition for why relaxing the cubic coefficient is appropriate. Finally,
we prove that the cubic regularization objective is only locally non-convex with
strict bounds. We use this to show that an update step of the cubic regularization
problem must be in a convex region of the function.

1 Motivation

1.1 Local Models and Upper Bounds

We begin with a discussion of second-order methods, specifically Newton’s method and it’s descen-
dants. Given an unconstrained optimization problem,

min
x∈Rn

f(x)

Newton’s method completes an update step

xk+1 = xk − [∇2f(xk)]
−1∇f(xk)

From a local model view, the motivation behind Newton’s method is clear: we minimize a second-
order Taylor series around f(xk).

Definition 1. Suppose f is n-times differentiable. Let f̃xk
(x;n) be the n-th order Taylor expansion

around xk.

Then, we can define the update step of Newton’s method as

f̃xk
(x; 2) = f(xk) + ⟨∇f(xk), x− xk⟩+

1

2
⟨∇2f(xk)(x− xk), x− xk⟩ (1)

xk+1 = argmin
x∈Rn

[
f̃xk

(x; 2)
]

(2)

Indeed, this update step looks very similar to the local model view of gradient descent. Suppose the
gradient of f is Lipschitz continuous. Then,

∥∇f(x)−∇f(y)∥ ≤ L

2
∥x− y∥ (3)
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We find the gradient descent with step xk+1 = xk − 1
L∇f(xk) is a solution of the problem

f̃xk
(x; 1) = f(xk) + ⟨∇f(xk), x− xk⟩ (4)

f̄xk
(x; 1) ≜ f̃xk

(x; 1) +
L

2
∥x− xk∥2 (5)

xk+1 = argmin
x∈Rn

[
f̄xk

(x; 1)
]

(6)

Lemma 1. Suppose f(x) has Lipschitz continuous gradient as defined in (3). Then, for any iterate
xk in the gradient descent scheme defined in (6), f(xk+1) ≤ f(xk).

Proof. It is trivial that for all x ∈ Rn, f̄xk
(x; 1) ≥ f̃xk

(x; 1). With the added Lipschitz continuous
gradient assumption, Nesterov and Polyak show that f̄xk

(x; 1) is also a global first-order upper bound
of f(x). It follows, then that

f(xk+1) = f
(
argmin
x∈Rn

[
f̄xk

(x; 1)
])

≤ f̄xk

(
argmin
x∈Rn

[
f̄xk

(x; 1)
]
; 1
)

= min
x∈Rn

f̄xk
(x; 1)

≤ f̄xk
(xk; 1)

= f(xk)

This shows that gradient descent always descends. With a bit more analysis, we see it also converges.

1.2 Newton’s Method as Anisotropic Gradient Descent

Taking a slight detour, the similarity between (6) and (2) suggests a different view of this analysis
that conveys the relationship between gradient descent and Newton’s method and why we might care
about second order methods.
Proposition 1. Suppose that f is twice differentiable. Then,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ ⇐⇒ −LI ⪯ ∇2f(x) ⪯ LI

Applying Proposition 1 to the second order taylor expansion about xk, we have

f̃xk
(x; 2) ≤ f(xk) + ⟨∇f(xk), x− xk⟩+

L

2
∥x− xk∥2 = f̄xk

(x; 1) (7)

If ∇2f(x) = LI (i.e. the Hessian is isotropic and strictly convex), we in fact have an equivalence
f̃xk

(x; 2) = f̄xk
(x; 1), meaning that Newton’s Method is equivalent to gradient descent with step size

1
L . The largest difference between Newton’s Method and gradient descent, and perhaps the advantage
of Newton’s method, seems to be when the hessian is largely anisotropic. In such cases, gradient
descent (if chosen with step size 1

L ) approximates an isotropic hessian with the largest eigenvalue,
losing much information.

1.3 Derivation of Cubic Regularization

We now formulate cubic regularization. Suppose f has Lipschitz continuous Hessian under the
operator norm. Then,

∥∇2f(x)−∇2f(y)∥op ≤
L

2
∥x− y∥

Nesterov and Polyak [1] show that

f̄xk
(x; 2) = f̃xk

(xk; 2) +
L

6
∥x− xk∥3 (8)
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is a global second-order upper bound of f . Adapting Lemma 1 to the case of a Lipschitz continuous
Hessian shows that

xk+1 = argmin
x∈Rn

[
f̄xk

(x; 2)
]

(9)

defines a scheme that also guarantees convergence. Thus, it becomes plausible to consider cubic
regularization as a more stable second-order optimization method. We explore what this means in the
following section.

1.4 Instability of Newton’s Method

Nesterov and Polyak [1] highlight a few issues pertaining to Newton’s method. The most
apparent issue is degeneracy in the Hessian, making [∇2f(x)]−1 not exist. This is solved by
Levenberg-Marquardt regularization by augmenting the hessian with some small µI . By making the
Hessian more isotropic, we can leverage the stability of gradient descent. Later, we will show that
cubic regularization solved with Lagrangian duality uses a similar regularization to avoid issues
pertaining to Hessian degeneracy.

An additional issue with Newton’s method is the tendency to converge to saddle points and
local maxima. We explore such a case in Example 1.

Example 1. Suppose f has Lipschitz continuous Hessian, is locally a concave quadratic, and obtains
a local maximum in that region.

∀x ∈ R, f(x) = 1

2
xTAx+ bTx

A ≺ 0

−A−1b ∈ R

If xk ∈ R, f̃xk
(x; 2) = f(x), so the next step of Newton’s method would take xk+1 = −A−1b, the

local maximum. ∇f(xk+1) = 0, so Newton’s method would get stuck here.

The problem in Example 1 occurs because Newton’s method solves first-order optimality conditions,
so it indiscriminately converges to stationary points. Cubic regularization as defined in (9) would
not have this instability since cubic regularization descends over the function family of lipschitz
continuous hessians. Given this, we might also expect cubic regularization to be more likely to
descend other function families.

2 Convergence Rates

2.1 Cubic Regularization of Newton’s Method

The equation (6) is not precisely the objective being minimized by Nesterov and Polyak [1]. Instead,
we relax the cubic coefficient. There are a few reasons this makes sense. For one, it may not be
tractable to find a tight Lipschitz bound on the Hessian. When working with nonconvex function
families, some other empirically found coefficient might obtain better results. It may also be true that
the Lipschitz bound locally is tighter than the global Lipschitz bound globally, so an adaptive scheme
where coefficient is free to change every iteration might generalize to more function families. Define

TM (x) ≜ argmin
y∈Rn

[
f̃x(y; 2) +

M

6
∥y − x∥3

]
(10)

f̂M (x) ≜ min
y∈Rn

[
f̃x(y; 2) +

M

6
∥y − x∥3

]
(11)

If M = 0, this is precisely the Newton step. If M = L, this relates to minimizing f̄x(y; 2). If
M ≥ L, under the Lipschitz Hessian assumption, we have a second order upper bound on f(x),
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meaning setting xk+1 = TM (xk) is a descent algorithm:

f(xk+1) ≤ f̄xk
(xk+1; 2)

≤ f̄xk
(xk+1; 2) +

M − L

6
∥xk+1 − xk∥3

= f̂M (xk)

≤ f(xk)

Now, we see the cubic regularization algorithm presented in the paper [1]:

Algorithm 1 Cubic Regularization of Newton’s Method
choose x0 ∈ Rn

choose L0 ∈ [0, L]
k ← 1
while end condition not met do

Choose Mk ∈ [L0, 2L] s.t. f(TMk
(xk)) ≤ f̂M (xk)

xk+1 ← TMk
(xk)

k ← k + 1
end while
return xk

We still haven’t discussed how we can efficiently solve TM (x), which we’ll leave to a later part.

2.2 Convergence

At any local optimum x∗, for some twice differentiable f(x), we must have that ∇f(x∗) = 0 and
∇2f(x∗) ⪰ 0. This inspires Nesterov and Polyak [1] to give a measure of local optimality:

µM (x) ≜ max
{√ 2

L+M
∥∇f(x)∥,− 2

2L+M
λn(∇2f(x))

}
(12)

Proposition 2. For some twice differentiable f(x) and M ≥ 0,

µM (x) = 0 ⇐⇒ ∥∇f(x)∥ = 0, ∇2f(x) ⪰ 0

If f(x) is convex in some region C ⊆ Rn, we also have that

∀x ∈ C, µ(x) =
√

2

L+M
∥∇f(x)∥ (13)

For M = L, µM (xk)
2 = ∥xk+1 − xk∥ for a gradient descent scheme with stepsize 1

L . One
interpretation of µ(x) in a locally convex set is the square root step distance for gradient descent. If
M ∈ [L, 2L], then µM (xk) ≤

√
∥xk+1 − xk∥.

Nesterov and Polyak [1] show that µM (TM (x)) ≤ ∥x − TM (x)∥, therefore for xk that Al-
gorithm 1 chooses, µM (xk+1) ≤ ∥xk+1 − xk∥. Fixing the convergence of µM (xk), the distance
between iterates converges quadratically with Algorithm 1 with respect to the distance between
iterates of gradient descent.

Using the bound on µM (TM (x)), the paper [1] provide a global convergence bound.

min
1≤i≤k

µL(xi) ≤
8

3

(3(f(x0)− f∗)

2k · L0

)1/3

(14)

Importantly, since uL(xi) ∝
√
∥∇f(xi)∥, we have that

min
1≤i≤k

∥∇f(xi)∥ ≤ O(k−2/3) (15)

Let x̄k be the best iterate so far,

x̄k = argmin
1≤i≤k

µL(x) (16)
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Then, we have limk→∞ µL(x̄k) = 0. Hence per Proposition 2,

lim
k→∞

∥∇f(x̄k)∥ = 0, lim
k→∞

λn(∇2f(x̄k)) ≥ 0 (17)

With assumptions about the second order differentiability of f(x), and since Nesterov and Polyak
[1] show the sequence {x̄k} converges to a limit point x∗ (which is a direct consequence of {xk}
converging to x∗), Algorithm 1 converges to a local minimum:

lim
k→∞

x̄i = x∗, ∥∇f(x∗)∥ = 0, ∇2f(x∗) ⪰ 0, f(x∗) = f∗ (18)

Importantly, this means that Algorithm 1 will not converge to a non-degenerate saddle point or local
maximum, a notion Nesterov and Polyak [1] formalizes in Lemma 6 of their paper.

2.3 Non-degenerate Case

Let’s turn our discussion to the choice of L0. If there is some point xk that is degenerate, then
λn(∇2f(xk)) = 0. There exists some non-zero u ∈ Rn and constant c ∈ R such that

⟨∇2f(xk)cu, cu⟩ = 0 (19)

Consider the next step of Algorithm 1:

f̂M (x) = min
y∈Rn

[
f(xk) + ⟨∇f(xk), y − xk⟩+

1

2
⟨∇2f(xk)(y − xk), (y − xk)⟩+

M

6
∥y − xk∥3

]
≤ f(xk) + ⟨∇f(xk), cu⟩+

1

2
⟨∇2f(xk)cu, cu⟩+

Mc3

6
∥u∥3

= f(xk) + ⟨∇f(xk), u⟩+
Mc3

6
∥u∥3

If we take M = 0, then if ⟨∇f(xk), u⟩ ≠ 0, we can choose c ∈ {+∞,−∞} such that
⟨∇f(xk), cu⟩ = −∞ so the problem is ill-defined. With M > 0, we effectively penalize selecting
large c, so this degeneracy is not an issue.

If we know that our function is some neighbourhood around a local minima is Non-degenerate,
then there is no need to enforce M ∈ [L0, 2L]. Nesterov and Polyak [1] prove that by relaxing
this constraint, so that M ∈ (0, 2L], we obtain quadratic convergence as a function of the smallest
eigenvalue. Let x0 be some point such that∇2f(x0) ≻ 0 and L∥∇f(x0)∥

λ2
n(∇2f(x0))

≤ 1
4

∥∇f(xk)∥ ≤ λ2
n(∇2f(x0))

9e3/2

16L2(2k)
(20)

Most interestingly, the starting assumption is sufficient so that ∇f(xk) ≻ 0, meaning not only does
this algorithm never arrive at a degenerate point, but the path it traces is also locally convex.

3 Solving Cubic Regularization

3.1 Standard Method

Nesterov and Polyak [1] have provided convergence rates of cubic-regularized Newton’s method in
terms of the number of iterations, but we have yet to show that each iteration of cubic-regularized
Newton’s method is computationally efficient. First, let us explore the form of the objective function
in (10). We rewrite it here with new notation for convenience:

vu(h, x) ≜ ⟨∇f(x), h⟩+
1

2
⟨∇2f(x)h, h⟩+ M

6
∥h∥3

TM (x) = argmin
h∈Rn

[
vu(h, x)

]
The benefit of this form over Newton’s method is it guarantees a bounded minimum since the cubic
term will asymptotically grow faster than the quadratic term.
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Lemma 2. If f(x) is not convex, vu(h, x) is not convex in some ball ∥h∥ ≤ r, but is convex outside
some ball ∥h∥ > 2r.

Proof. We begin by computing the hessian of vu(h, x)

∇2
h vu(h, x) = ∇2

xf(x) +M
hhT + ∥h∥2I

2∥h∥
(21)

Let un be the eigenvector corresponding to the minimum eigenvalue of ∇2f(x). First we show that
for ∥h∥ ≤ r:

min
y

[
⟨∇2

h vu(h, x)y, y⟩
]
< 0

max
∥h∥≤r

min
y

[
⟨∇2

h vu(h, x)y, y⟩
]
= max

∥h∥≤r
min
y

[
⟨∇2

xf(x)y, y⟩+M
(hT y)2

2∥h∥
+

M

2
∥h∥∥y∥2

]
≤ min

y
max
∥h∥≤r

[
⟨∇2

xf(x)y, y⟩+M
(hT y)2

2∥h∥
+

M

2
∥h∥∥y∥2

]
= min

y

[
⟨∇2

xf(x)y, y⟩+Mr∥y∥2
]

= ∥y∥2(λn +Mr)

Hence, ∥h∥ ≤ r < −λn

M guarantees vu(h, x) is not convex. Now, we show that for some R and for
all ∥h∥ ≥ R:

min
y

[
⟨∇2

h vu(h, x)y, y⟩
]
≥ 0

min
∥h∥≥R

min
y

[
⟨∇2

h vu(h, x)y, y⟩
]
= min

y
min

∥h∥≥R

[
⟨∇2

xf(x)y, y⟩+M
(hT y)2

2∥h∥
+

M

2
∥h∥∥y∥2

]
= min

y

[
⟨∇2

xf(x)y, y⟩+
M

2
R∥y∥2

]
= ∥y∥2(λn +

MR

2
)

We see that R ≥ −2λn

M guarantees that vu(h, x) is convex. Since R > 2r the proof is complete.

This analysis shows that vu(h, x) obtains convexity outside of some ball. This means any local
optimums found outside of this ball are global optimums outside of this ball. Curiously, we see this
ball come up in Nesterov and Polyak’s proof of an optimal update step.

Since vu(h, x) is often non-convex, the paper [1] proposes a dual function

vl(r, x) ≜ −
1

2
⟨
(
∇2f(x) +

Mr

2
I
)−1

∇f(x),∇f(x)⟩ − M

12
r3 (22)

such that strong duality holds

D ≜ {r : ∇2f(x) +
Mr

2
I ≻ 0, r ≥ 0} (23)

inf
h∈Rn

vu(h, x) = sup
r∈D

vl(r, x) (24)

It is clear that any element r ∈ D must satisfy r ≥ max{−2λn

M , 0}. Nesterov and Polyak [1] prove
that an optimal r must also satisfy

r = ∥
(
∇2f(x) +

Mr

2
I
)−1

∇f(x)∥ (25)
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These are sufficient conditions to guarantee a globally optimal solution to vu(
∇2f(x) +

Mr

2
I
)−1

∇f(x) = argmin
h

[
vu(h, x)

]
(26)

What’s interesting to note is (26) can be viewed as adaptive Levenberg-Marquardt regularization.
Instead of choosing some µ that we hold constant, we select µ based on how non-convex our local
quadratic approximation is. Perhaps more importantly, since r is the distance of our update step per
(25) and r ≥ −λn

M , r ≥ R where R is defined as in lemma 2. This means our update step is outside
the ball defined by ∥h∥ < R and thus in a convex region of vu(h, x).

Solving r is a well-researched problem in the area of trust region optimization, and a solution is
efficient, although the details of arithmetic operations required are left out in the paper [1].
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