Calculate $15^{2021} \pmod{17}$. (Hint: You may want to choose a different representation of 15 in mod 17.)

Solution: Instead of using brute repeated exponentiation, we can convert this to a more manageable form: $(-2)^{2021} \pmod{17}$ since $15 \equiv -2 \pmod{17}$. Now we notice that $(-2)^4 \equiv 16 \equiv -1 \pmod{17}$. Hence,

$$15^{2021} \equiv (-2)^{2021}$$
 (mod 17)

$$\equiv ((-2)^4)^{505} \cdot -2$$
 (mod 17)

$$\equiv (-1)^{505} \cdot -2$$
 (mod 17)

$$\equiv -1 \cdot -2$$
 (mod 17)

$$\equiv 2$$
 (mod 17)